Easy Find It Page
Easy Find It
Use Our Mobile Site
Use Our Mobile Site
Share This Website
The Sugar Trehalose
Free NEWS Letter
Affiliate Program
Untitled Document

Already an Affiliate? Click on the link below to access your account-

Affiliate Login

Endowment Book Store
The Trehalose Store
Endowment Store Front
Support The Endowment
Enter Amount:
We Accept
VisaMaster CardAmerican ExpressDiscoverssl lock
Download Store

Download Store

Download 7 Free Newsletters Plus Other Educational Materials

Main Menu
Home
- - - - - - -
Inside the Human Cell
The Sugar Trehalose
- - - - - - -
Sugar Science Forum
Glycomics Training
Interactive Glycomics Brochure
NEWS
7 FREE NEWSletters
HOT Links of Interest
- - - - - - -
Contact Us
Disclaimer
Sitemap
Educational e-textbook
Chapter One

Chapter One

FREE Sneek Peek
Chapter One


Evaluation Forms

Huntington’s General
Health Evaluation
FORM for Trehalose
Nutritional Pilot Survey

Parkinson's General
Health Evaluation
FORM for Trehalose
Nutritional Pilot Survey

Alzheimer / Dementia
General Health Evaluation
FORM for Trehalose
Nutritional Pilot Survey

Diabetic Health Evaluation
FORM for Trehalose
Nutritional Pilot Survey

General Public Health
Evaluation FORM for
Trehalose Nutritional
Pilot Survey (For General
Public without Huntington’s,
Alzheimer’s, or Parkinson’s.)

Who's Online
We have 193 guests online
New Research Study Explains HOW the Sugar Trehalose Inhibits Alzheimer�s
New Research Study Explains HOW the Sugar Trehalose Inhibits Alzheimer�s

Comments by J. C. Spencer

Over the last few years research in Universities around the world have supported evidence that the sugar trehalose inhibits protein plaque buildup that causes neurodegenerative diseases including Alzheimer�s, Parkinson�s, and Huntington�s diseases. A new report from the Tianjin University in China explains just how trehalose is able to accomplish this remarkable event in the brain. We learn that the trehalose molecules cluster around the peptide at a specific distance. The intra-peptide hydrophobic interactions are weakened and the Aβ42 contacts are decreased by the trehalose. This finding shines light on the actual molecular mechanism that has the inhibiting effect. More research is needed. This evidence helps point the way for better mental health and neurodegenerative research.

Here is the Abstract and supporting references.

- - - - - - - - - - - - - - -

Molecular Dynamics Simulation of the Conformational Transition of Amyloid Peptide 42 Inhibited by Trehalose

LIU Fu-Feng, DONG Xiao-Yan, SUN Yan

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China

Abstract:

The molecular mechanism of the conformational transition of amyloid peptide (Aβ) 42 inhibited by trehalose was studied using molecular dynamics simulations. It is confirmed that the conformational transition of Aβ42 is prevented by trehalose in a dose-dependent manner. In water and low-concentration trehalose (0.18 mol�L-1) solutions, Aβ42 transforms from its initial α-helix to a β-sheet. In 0.37 mol�L-1 trehalose, however, the conformational transition of Aβ42 is prevented. It is obvious that there is a hydration shell within about 0.2 nm from the closest atoms of Aβ42 on the peptide surface, which is caused by the preferential exclusion of trehalose. Trehalose molecules cluster around the peptide at a distance of 0.4 nm. In addition, the intra-peptide hydrophobic interactions are weakened and the number of long range contacts of Aβ42 is decreased by trehalose. Therefore, the hydrophobic collapse of the peptide is alleviated and the conformational transition is inhibited. The work has shed some light on the molecular mechanism of the inhibition effect for the conformational transition of Aβ in the presence of trehalose. These findings are important for the rational design of a highly efficient inhibitor of Alzheimer's disease.

Keywords: Molecular dynamics simulation Alzheimer's disease Amyloid peptide Trehalose Received: 2009-12-10 Accepted: 2010-03-03 Online: 2010-04-23 Corresponding Authors: SUN Yan Email: [email protected]

Other similar articles

1. Cheng Zhao-Nian,Ding Hong,Lei Yu,Xu Li.A Study of Molecular Dynamics Simulation for Rubidium Chloride Melting[J]. Acta Physico-Chimica Sinica, 1995,11(10): 890-895

2. Zhou Guo-Rong;Wu You-Shi;Zhang Chuan-Jiang;Zhao Fang. Molecular Dynamics Simulations of the Effect of Icosahedral Quasicrystal on the Formation of Amorphous[J]. Acta Physico-Chimica Sinica, 2003,19(01): 13-16

3. Huang Shi-Ping, Liu Hong-Lin, Ma Yan-Hui, Tang Bo, Chen Nian-Yi. Molecular Dynamics Simulation of ZnCl2 Melts[J]. Acta Physico-Chimica Sinica, 1995,11(01): 71-73

4. Huang Shi-Ping;Ma Yan-Hui;Tang Bo;Xu Hua;Chen Nian-Yi. Molecular Dynamics Study of NaCl-NaBr Melt[J]. Acta Physico-Chimica Sinica, 1994,10(11): 1045-1048

5. Cheng Zhao-Nian; Jia Zheng-Ming; Xu Li; Chen Nian-Yi. Molecular Dynamics Simulations of Molten Salt Solutions NaCaF3, Na2CaF4 and Na3CaF5[J]. Acta Physico-Chimica Sinica, 1994,10(08): 676-679

6. WU Xiao-ping; LIU Zhi-ping; WANG Wen-chuan. Molecular Dynamics Simulation of Gas Solubility in Room Temperature Ionic Liquids[J]. Acta Physico-Chimica Sinica, 2005,21(10): 1138-1142

7. LIU Chun-li; LI Chun-hua; CHEN Wei-zu; WANG Cun-xin. Study on Interaction between HIV-1 Integrase and Its Dicaffeoyl Inhibitors through Molecular Modeling Approach[J]. Acta Physico-Chimica Sinica, 2005,21(11): 1229-1234

8. ZHANG Tao;GU Ting-Kun;QI Yuan-Hua. Evolvement on the Microstructure of Molten Compound AuCu3 in Rapid Cooling[J]. Acta Physico-Chimica Sinica, 2005,21(02): 173-176

9. Qin Xu-Bo;Zhang Yan-Ning;Lu Jian-Lin. The Ability of Glass Formation Dominated by the Mismatch in Atomic Size[J]. Acta Physico-Chimica Sinica, 2003,19(12): 1163-1166

10. Yin Kai-Liang;Xu Duan-Jun;Xia Qing;Ye Ya-Jing;Wu Guo-Ying;Chen Cheng-Lung. Molecular Dynamics Simulation on Solidification Process of n-hexadecane Systems[J]. Acta Physico-Chimica Sinica, 2004,20(03): 302-305

11. Liu Xin;Meng Chang-Gong;Liu Chang-Hou. Melting and Superheating of Ag at High Heating Rate[J]. Acta Physico-Chimica Sinica, 2004,20(03): 280-284

12. Shao Jun;Xu Hua;Lu Wen-Cong;Chen Nian-Yi. Transport Property Anomalies under High Pressure in Molten Na2O-SiO2 Binary System Studied by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2004,20(03): 237-239

13. Zhang Tao;Zhang Xiao-Ru;Wu Ai-Ling;Guan Li;Xu Chang-Ye. Molecular Dynamics Simulations of the Heating and Melting Processes of Metal Cu[J]. Acta Physico-Chimica Sinica, 2003,19(08): 709-713

14. CUI Bao-Qiu; GONG Li-Dong; ZHAO Dong-Xia. Molecular Dynamics Simulation of Microperoxidase in Aqueous Solution in Terms of the ABEEM/MM Method[J]. Acta Physico-Chimica Sinica, 2008,24(06): 1035-1040

15. ZHANG Jun; ZHAO Wei-Min; GUO Wen-Yue; WANG Yong; LI Zhong-Pu.Theoretical Evaluation of Corrosion Inhibition Performance of Benzimidazole Corrosion Inhibitors[J]. Acta Physico-Chimica Sinica, 2008,24(07): 1239-1244

16. CHEN Xin-Yuan, LV Yang, LI Shen-Min. Molecular Dynamics Simulations on the Stability of (3+1) Mixed-Type Hybrid G-quadruplex in Human Telomere[J]. Acta Physico-Chimica Sinica, 2009,25(04): 783-791

17. CUI Wei, ZHANG Huai, JI Ming-Juan. Molecular Dynamics Simulations and Free Energy Calculations of a Novel Series of Protein Tyrosine Phosphatase 1B Difluoromethylenephosphonic Acid Inhibitors[J]. Acta Physico-Chimica Sinica, 2009,25(04): 668-676

18. ZHAO Yong-Shan, ZHENG Qing-Chuan, ZHANG Hong-Xing, CHU Hui-Ying, SUN Chia-Chung. Homology Modeling of Human Serine Racemase and Its Molecular Docking with Peptide Inhibitors[J]. Acta Physico-Chimica Sinica, 2009,25(03): 417-422

19. PAN Guo-Xiang; NI Zhe-Ming; WANG Fang; WANG Jian-Guo; LI Xiao-Nian. Molecular Dynamics Simulation on Structure, Hydrogen-Bond and Hydration Properties of Diflunisal Intercalated Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica, 2009,25(02): 223-228

20. CHEN Cong, LI Wei-Zhong. Molecular Dynamics Simulation of Hydrogen Bonding Characteristics in Aqueous Glycerol Solutions[J]. Acta Physico-Chimica Sinica, 2009,25(03): 507-512

21. Liu Rang-Su,Zhou Qun-Yi,Li Ji-Yong. A Molecular Dynamics Simulartion Study on the Structural Transitions in Liquid Metals[J]. Acta Physico-Chimica Sinica, 1995,11(08): 755-757

22. Gu Jian-De,Tian An-Min,Yan Guo-Sen. Molecular Dynamics Simulations for the Spectra of N2 and O2 Aqueous Solutions[J]. Acta Physico-Chimica Sinica, 1995,11(08): 719-723

23. ZHOU Zhen;YAN Tian-Ying;GAO Xue-Ping. Simulation and Design for Energy Storage Materials[J]. Acta Physico-Chimica Sinica, 2006,22(09): 1168-1174

24. Zhang Yan-Ning;Wang Li;Bian Xiu-Fang. Melting of Au Nanoclusters by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2003,19(01): 35-39

25. WU Xiao-ping; LIU Zhi-ping. Computer Simulation Study of the Mixtures of Room Temperature Ionic Liquid [bmim][BF4] and Water[J]. Acta Physico-Chimica Sinica, 2005,21(09): 1036-1041

26. SUN Hao, JIANG Yong-Jun, YU Qing-Sen, ZOU Jian-Wei. Molecular Dynamics Simulation of Significant Roles of Structural Water Molecules in Glycogen Synthase Kinase-3?[J]. Acta Physico-Chimica Sinica, 2009,25(04): 635-639

27. SONG Qi-Sheng, GUO Xin-Li, YUAN Shi-Ling, LIU Cheng-Bu. Molecular Dynamics Simulation of Sodium Dodecyl Benzene Sulfonate Aggregation on Silica Surface[J]. Acta Physico-Chimica Sinica, 2009,25(06): 1053-1058

28. FU Yi-Zheng, LIU Ya-Qing, LAN Yan-Hua.Molecular Dynamics Simulation on Compatibility of Hydroxyl-Terminated Polybutadiene/Plasticizer Blends[J]. Acta Physico-Chimica Sinica, 2009,25(07): 1267-1272

29. ZHAO Jian-Wei, LIU Hong-Mei, NI Wen-Bin, GUO Yan, YIN Xing. Electron Transfer Studied at theMolecular Level[J]. Acta Physico-Chimica Sinica, 2009,25(07): 1472-1480

30. LI Zhen-Quan; GUO Xin-Li; WANG Hong-Yan; LI Qing-Hua; YUAN Shi-Ling; XU Gui-Ying; LIU Cheng-Bu. Molecular Dynamics Simulation of Anionic Surfactant Aggregation at the Oil/Water Interface[J]. Acta Physico-Chimica Sinica, 2009,25(01): 6-12

31. CAI Kai-Cong, WANG Jian-Ping. Molecular Dynamical Structures of Glycolaldehyde[J]. Acta Physico-Chimica Sinica, 2009,25(04): 677-683

32. CHEN Ying; WANG Xiu-Ying; ZHAO Jun-Qing. Molecular Dynamics Simulation on Melting of Metal Cluster with Small Size[J]. Acta Physico-Chimica Sinica, 2008,24(11): 2042-2046

33. HU Jian-Ping; KE Guo-Tao; CHANG Shan; CHEN Wei-Zu; WANG Cun-Xin. Conformational Change of HIV-1 Viral DNA after Binding with Integrase[J]. Acta Physico-Chimica Sinica, 2008,24(10): 1803-1810

34. FU Yi-Zheng; LIU Ya-Qing; MEI Lin-Yu; LAN Yan-Hua. Molecular Dynamics Simulation on Binding Energies and Mechanical Properties of HTPB and Different Crystal Faces of Al[J]. Acta Physico-Chimica Sinica, 2009,25(01): 187-190

35. LI Shu; LIU Lei; CAO Zhen; WANG Ji-Qiang; YAN Tian-Ying. Molecular Dynamics Simulation on a Eutectic Systemof LiTFSI/Urea[J]. Acta Physico-Chimica Sinica, 2007,23(07): 983-986

36. PENG Chuan-Xiao; WANG Li; ZHANG Yan-Ning. Amorphization of Ni Nanowires Induced by Strain Rate[J]. Acta Physico-Chimica Sinica, 2007,23(04): 517-520

37. Xu Hua;Shao Jun. Molecular Dynamics Simulation of Fast Li+ Conduction in Fluoroborate Glasses[J]. Acta Physico-Chimica Sinica, 2002,18(01): 10-13

38. Zhu Xiao-Lei,Zhou Zhi-Hua,Lu Wen-Qing,Huang Jin-Fan,Peng Pan-Ying. A Possible New Solid Phase Observed from Molecular Dynamics Study of CBr4[J]. Acta Physico-Chimica Sinica, 1997,13(09): 815-821

39. Wang Li;Bian Xiu-Fang;Li Hui.Liquid-Solid Transition and Crystal Growth of Metal Cu by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2000,16(09): 825-829

40. HOU Huai-Yu;CHEN Guo-Liang;CHEN Guang. Molecular Dynamics Simulation of the Structure Transformation before and after Ni Melting[J]. Acta Physico-Chimica Sinica, 2006,22(07): 771-776

41. Xu Hua;Shao Jun. Molecular Dynamics Simulation of the Phase Transition of ?-berlinite under High Pressure[J]. Acta Physico-Chimica Sinica, 2000,16(06): 512-516

42. Ji Ming-Juan;Ye Xue-Qi;Yang Peng-Cheng. Molecular Dynamics Simulations for Met-enkephalin[J]. Acta Physico-Chimica Sinica, 1999,15(11): 1011-1016

43. Li Hui;Bian Xiu-Fang;Li Yu-Chen;Liu Hong-Bo;Chen Kui-Ying. The Molecular Dynamics Simulation of Liquid Noble Metal Au[J]. Acta Physico-Chimica Sinica, 1998,14(07): 630-634

44. Liu Xin;Meng Chang-Gong;Liu Chang-Hou. Heating Rate Induced Melting and Superheating of Pb[J]. Acta Physico-Chimica Sinica, 2003,19(08): 681-685

45. Lei Yu,Cheng Zhao-Nian,Tang Ding-Yuan. A Study of Structure in ?-BAB2O4 Melt by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 1996,12(06): 481-484

46. Cheng Zhao-Nian; Jia Zheng-Ming; Zhang Jing; Chen Nian-Yi. Radial Distribution Functions of Molten CaF2[J]. Acta Physico-Chimica Sinica, 1993,9(04): 438-441

47. Cheng Zhao-Nian; Zhang Jing; Jia Zheng-Ming; Chen Nian-Yi. Ca2+ Sublattice and F- Sublattice in Superionic Conductor CaF2[J]. Acta Physico-Chimica Sinica, 1991,7(04): 390-393

48. Shao Jun; Tang Zheng-Quan. A Computer Simulation on Local Structure in LiCl Quenching Process �� The Computation of the Voronoi Polyhedron for the Simuiation Unit Cell Extended with Periodic Boundary Condition[J]. Acta Physico-Chimica Sinica, 1991,7(05): 571-576

49. GAO Ting-Hong, LIU Rang-Su, ZHOU Li-Li, TIAN Ze-An, XIE Quan. Formation Properties of Cluster Structures during the Rapid Solidification of Liquid Ca7Mg3 Alloy[J]. Acta Physico-Chimica Sinica, 2009,25(10): 2093-2100

50. DING Wei, LIU Guo-Yu, YU Tao, QU Guang-Miao, CHENG Jie-Cheng, WU Jun-Zheng. Molecular Dynamics Simulations and Free Energy Perturbation Calculations of Alkyl Aryl Sulfonate[J]. Acta Physico-Chimica Sinica, 2010,26(03): 727-734

51. ZHANG Jun, YU Wei-Zhao, YAN You-Guo, YU Li-Jun, REN Zhen-Jia. Molecular Dynamics Simulation of the Adsorption Behavior of Imidazoline Corrosion Inhibitors on a Fe(001) Surface[J]. Acta Physico-Chimica Sinica, 2010,26(05): 1385-1390

www.endowmentmed.org

Last Updated ( May 10, 2010 at 03:29 PM )